Sausage Factory Finale – Milling a Hammond Stomp Box Enclosure

Hi everyone!

With the holiday season behind us it’s time I give you the last installment regarding my Sausage Factory overdrive/distortion project.  I’m from Australia originally, so I grew up with Christmas and New Year’s Day holidays in the sweltering heat of summertime. For most of the readers of this blog, you’re in the Northern Hemisphere so just imagine having Christmas or Hanukkah in July, trying to stay cool in 35 to 40°C (95 – 104°F) in high humidity. Oddly enough we had Christmas trees and watched American Christmas movies wondering what it must be like to have all that soft powdery snow!

These days I live in America, and I’ve come to love the holidays when it’s cold outside. Why? More time for staying indoors doing electronics projects of course!

So these few days out of the office have given me a chance to get some stuff finished with the Sausage Factory project. And thanks to our friends at Bantam Tools, I’ve been able to do some neat things with the Bantam Tools Desktop PCB Mill. In this final project blog for the Sausage Factory I want to show you how to use the PCB mill for something every project needs – a good quality enclosure to mount it in.

A variation of this blog with more machine setup details will be shared from the Bantam Tools site soon – so be sure to subscribe to their blog as well. I’ll come back here and provide the link when it’s ready.

I can’t thank Bantam Tools’ pro’s Zach and Kim enough for their help and guidance – I found little to no information on the web about how to mill a metal or plastic project box with this device, and I know very little about CAM, so this was a first for me and probably will be for many electronics engineers and hobbyists out there.

I broke a couple of bits while getting this right, so read this so you won’t have to!

Here goes…

Designing the PCB for a Hammond 1590BB metal box enclosure

From the start I planned to use a Hammond 1590BB aluminium (that’s Aussie for “aluminum”) project enclosure. These boxes are probably the most popular on the planet when it comes to guitar effects building – even many commercial pedal manufacturers use these because they’re very strong, have a great finish, are available pre-painted, and can easily withstand being stepped on by brutal guitar players.

I chose the 1590BB which is about a double-width of the more frequently used 1590B because I’m essentially putting two stomp-boxes (an overdrive and a graphic EQ) into a single unit:


Here’s the datasheet:

Hammond documentation is really good – their data sheets even have a spinning 3D model of the enclosure and lid alongside the 2D dimension drawings. I used those drawing dimensions to set the size of the PCB outline in the Upverter “Mechanical Details” layer, using the dimension tool to make sure I got it right. Most users of course would normally have a DXF/DWG file from 2D CAD as a PCB outline drawing, but I am starting in the PCB and deriving all my data for construction from that.

Since this project was done in Upverter it was quick and easy enough just to draw it based on the datasheet dimensions, but next time I’ll download the DXF from Hammond (they make those available too!)

2019-01-14 14_08_45-SausageFactory (public design) - Opera.png

What you see here is a screenshot from Upverter with just the Mechanical Details, Top Package Outline, and Holes layers enabled. All the slider pots when I created the footprints in Upverter I used the Top Package Outline to accurately place the necessary rectangular slots and 2mm holes for the development of just such a drawing, and slot pattern for CAM in any panels they may be mounted to.

Just a not about the jack portion and room for the footswitches: you can see in the image above, that I placed slots in the PCB between the main circuitry (to the left) and the audio and power jacks (to the right). The design intent was to be able to test the board after initial assembly (which I did in my sound test video in the last blog) and then separate the jack board with a Dremel and connect it with wires for final mounting in the box – there are photos of this below, so read on.

I used the 3D model with the component detail layers exported from Upverter, and those in turn allowed me to make a 2D dimensioning drawing in MCAD:

2019-01-14 14_25_52-Sausage Factory 3D Model from Upverter - Alibre Design Expert.png

I use a few different MCAD tools at different times, but since all the Bantam Tools help blogs and documentation centers around Fusion 360, and since Fusion 360 also includes CAM tools for generating the gcode for CNC milling, I caved in a decided to use it for this project. The tool is nice with a modern UI but doesn’t follow paradigms I’m more familiar with from my experience with Solidworks or Alibre, so it was a bit of a learning curve, but before too long I had imported the STEP model of the 1590BB enclosure, and generated an extrusion for milling the top of the box. Later on I added the larger holes as well for the footswitches. Here’s the screenshot of the enclosure model ready for generating CAM toolpaths for the Bantam Tools Desktop CNC Mill:

2019-01-14 15_24_27-Autodesk Fusion 360 (Startup License).png

Not be glib – I’ll elaborate in a future post as a guest on the Bantam Tools site as to the process, but to summarize, here’s how I made this model:

  • Imported the 1590BB STEP model, downloaded from Hammond Manufacturing’s website.
  • Created three sketches, aligned with the plane of the box surface:
    • One for the slots and potentiometer holes, drawn from my 2D dimensions diagram (above) – this method is very precise because the positions come directly from the PCb components.
    • Another for the footswitch mounting holes (they are not PCB mounted, so these are positioned aligned with box centerline).
    • And the last for the text.
  • Extruded all the holes and slots through the box surface (the top of the actual stompbox pedal is actually considered the “bottom” of the mechanical model for some reason, so I had to re-orient it by flipping the assembly in Fusion 360).
  • Extruded all the text to a shallow depth (1mm or so) from the surface – this is for using the CNC mill to engrave the text into the box surface.

After creating the model, I switched Fusion 360 into CAM mode, and created three separate tool paths for milling.

  • The larger holes are all milled with a 1/8” flat end-mill, to save time. This is setup as a 2D Adaptive cut with the spindle at 16,500 RPM and 150mm/min plunge rate – because we’re using a larger bit we can be a little more aggressive to speed things up.
  • The slots are very fine, as are the 2mm holes for the sliders, so these needed to be done with a 1/16” flat end-mill, using a 2D Contour cut. At first pass I used the 1/32” end mill which was working great and making a very precise rectangle – until it got to the 2mm hole breakthrough and the excess material left in the center of the hole broke the bit! Moving to the 1/16” tool saved that problem because the tool path overlapped enough to not leave any loose materials in the holes or slots. Similar feeds and speeds were used.
  • The text was hard to figure out in Fusion 360. Somehow I figured a 1/32” flat end mill would be able to make nice 3D engraved markings on the box, but no matter what I did it refused to generate a tool path. Then after many attempts and trying different cut types, I used a 2D Contour cut with the engraving bit, and it successfully generated a tool path for the text. This still needs some tweaking – on the first non-painted 150BB box, the tool path was too deep. The text is legible, but looks a bit rough. But by setting the depth of cut shallower by about 0.5mm and milling the pre-painted enclosure, the engraving bit follows the letter outlines and it looks very nice.

Here’s a screenshot of the text engraving toolpath in Fusion 360:

2019-01-14 15_44_11-Autodesk Fusion 360 (Startup License).png

Then, it’s just a matter of post-processing the tool paths into GCODE files for the mill. I mounted the box including it’s base attached with the four screws, using the double stick tape that came with the Bantam Tools setup, to the front-left (lower left) corner of the spoilboard. Aligning this was easy, because the machine is highly accurate and zeros itself whenever you power up.

I created a new mill plan in the Bantam Tools software (formerly known as “OtherPlan”), and set the material to “generic” with the material dimensions just big enough to exactly fit the space of the box plus the mounting tape. Each GCODE pass was loaded into the plan and the tools specified to run them one at a time. Here’s a video I put together to show the process once I had the GCODE ready to go:

The end result looks like a professional, boutique guitar pedal which, well, hey that’s precisely what it is!


How to make panelized PCB with Upverter by Sitt Hein

Hi Upverter community, my name is Sitt Hein and today I want to share some of my PCB fabrication experience with you. I have been using Upverter to manufacture PCBs for some of my personal projects. Before Upverter, I used Eagle software but switched to Upverter for its simple interface and easy component creation. The schematic part of Upverter is straightforward; however, PCB layout can be tricky if you are designing non-rectangular panelized boards. Since there are not many tutorials about it online, I decided to share my experience about panelization with Upverter. Hope this will be helpful with your PCB manufacturing.


My PCB layout in Upverter

Fabricated PCB.jpeg

Fabricated PCB board


It is easier to manufacture each design separately but sometimes, you will have various reasons to panelize different boards into one large PCB. If you are doing so, you’ll have to stick with your manufacturer’s panelization guidelines. Here is panelization rule from Seeed studio and I chose them because they have great board quality, simple online quotation and affordable price. You can reach their website here if you are planning to make PCBs in future.

multiple boards panalized together.png

Example of multiple boards panelized together (Image: Seeedstudio)


To panelize, you will need shape of child boards in slots with bridges like above. This is to keep them connected during manufacturing process but still can be separated easily with a snap when necessary. First of all, create individual parts for all the boards including parent board like below so that their shapes can be modified, organized and moved easily. Another advantage of drawing boards in part level is that Line function can be utilized which is a necessary tool to draw slots and bridges. And just one component can be reused for repeating designs as well.

Left to right: Symbol of a sensor board and its footprint outlined with slot tool path


For board outlines, we cannot use standard rectangle or circle because they are only available for continuous shape. As mentioned before, Line function in “Mechanical” layer will be used instead to create connecting bridges. The way I get coordinates is by drawing PCB outlines in CAD software, Fusion 360 in my case and manually input every single point. One factor to consider is the offset for tool path. I choose 1mm drill and so you will see offset of 0.5mm in below GIF to get actual board size. The black dots are meant to mark coordinates for Upverter. With all the trials and errors, it took me about few days to complete.

Plotting coordinates in Fusion 360.gif

Plotting coordinates in Fusion 360

Drawing PCB milling slots in Upverter .gif

Drawing PCB milling slots in Upverter


For those who are familiar with Upverter, you will know that any shape in Mechanical layer must be drawn in closed-loop shape in order to comply with design constraint. Since my project has a large number of boards, it is very time consuming to draw every single slots and making them closed-loop shape. To finish it faster, I took shortcut by leaving them open like left and top side of below picture and this reduced half of the points.

open vs closed slots

Open slots on left and top Vs. Closed slots on right and bottom


However, this gave me design rule error as expected and I couldn’t load the project. This is because Upverter is requesting all the outlines in Mechanical layer to be closed but I purposely left them open. In the event of browser cannot load your project due to design rule error like mine, you can solve it by adding ,skip_constraints=true to the end of your project number in URL. For example,,designId=xxxxxxxxxxxxxxx,skip_constraints=true should skip rule checking and will solve the issue. If not, you will need to contact Upverter support team. Thus, I don’t recommend to leave outlines open unless you really need to save a large number of coordinates. And I hope Upverter team can take a look into this design rule checking and make improvement for panelization in future updates.


So, this is how you design panelized boards with Upverter and thanks for reading. If you think my sharing is useful, please spread this to your Upverter friends or do share with me if there is a better way to panelize PCB. Cheers!

Happy Holiday Contest

It is cold outside, at least up here in Canada, Hanukkah is underway and Christmas is just around the corner!  So we want to manufacture (for you) some of the most fun or interesting holiday designs that are made in Upverter!  We will share the winning designs in a couple of weeks.

What are we looking for?  Anything that is holiday or winter related! Something in the shape of a snowflake (thanks Zak), Christmas trees, menorahs, or anything else that gets you into the spirit.  Here is Zak’s amazing snowflake design, I can practically feel the winter breeze.

Snowflake pcb layout

Special Snowflake Design link

How do you participate and win?

  1. Design a holiday themed design in Upverter.
  2. Make the design Public (you should give it a good description too).
  3. Send an email with a link to the project and what it is. No later than Friday December 14th.
    • Bonus points for design notes on how you designed it, and why you picked your components!
  4. We will pick some number of amazing winners, get those designs manufactured and send the winners their design, manufactured.

I can’t wait to see the designs!

Happy holidays and have fun designing!


High-End Electro-Mechanical Watch PCB Design using Upverter

I have been designing circuits for the last 20 years. As a hobbyist, employee, consultant and independent designer under the brand name Division Furtive. For various reasons, I was often forced to shift from one EDA tool to another. At the end of the day, I think being a good circuit designer mean being able to do the job with any tool available. This context trained me to always be on the lookout for the best EDA tool available. For Division Furtive’s fourth watch, Type 77, I decided to try Upverter because:
– it was free
– I really liked the idea of an online tool with the design residing on the server*
– it is made by a fellow Canadian start-up
*Having to return to old software, either uninstalled or delicensed, is a massive pain. For a project I went as far as storing a laptop with project files and software in case I needed to do edit in the future. Only needing a browser to work on a circuit is a new paradigm for me and I really like it.
The design objective was to make an electro-mechanical watch (moving minute disc inside back-lit hour ring). It would have customizable RGB color (to match your clothing or other things such as your motorcycle) using a built-in optical color sensor at the press of a button. The three GIFs below highlight the watch’s biggest features. The complete promo video (including 3 side-kick devices) can be viewed here.
Being a footprint-freak, I really enjoy investing time early on in the project to devise a good looking and consistent library. Upverter’s built-in libraries and concierge service made this even more enjoyable.
Doing the schematic, I was impressed by the responsiveness and robustness of the user interface. Having used various tools in the past, I mostly fear netlist errors introduced by the tool itself (e.g.: moving a part that end up having distinct nets tied together). Very rapidly I was up and running with a very high level of confidence in the tool.
Layout work was also very reassuring. The user interface is well done, and it is incredible how Upverter is ultra responsive considering it is an online tool (I usually use an average speed internet connection). It works beautifully. Something I guess you only get with new software written from scratch. Most older (and more expensive) software is plagued with annoying bugs that you just learn to live with (the sum of decades of patches). My level of tool-oriented frustration dropped to an all-time low using Upverter and being happy while working really sold me to the tool. By itself, the fact that changes done in schematic are automatically updated in layout without having to manually export a netlist improved my design experience drastically.
Going to production was seamless. Gerber files export and supporting files creation is simple. As a sanity check, I always visualize the gerber files with an independent file viewer just to make sure to avoid sending nonsense to the factory. I used MyRO PCB for manufacturing and hand assembled the first boards as I always do. For the record, the Type 77 PCB did not need any edit and the first board ended up being the working prototype!
In the end, I was having so much fun designing the Type 77 watch with Upverter that I did not invest nearly as much time as I should have in marketing (while trying to fly solo without Kickstarter at the same time). Even if this was the sleekest Division Furtive watch ever designed, the higher price point made it a tough sale to my current customer base. I ended putting the old saying “quit while you are ahead” in practice and decided it was wiser to simply go back to consulting. At this regard, if you even need design assistance (I also do 3D modeling), you can find me at



As you take on or create projects, some will be easy and some will be difficult. Some will be one-offs and others will need to be made at scale. In this write-up, we will be exploring my biggest project to date, Distributed Symphony, and how the microcontroller at its core was built in a browser.

Header image

Step 1: The Opportunity

The Distributed Symphony is the largest and most complex project I have pulled off. Once a year I have the unique opportunity to bring a fun experience to a corporate offsite for an audience of 600 executives. For the past few installments, the “fun” has been packaged as a design challenge. The prompt for the first iteration was to build a ball machine that sends a ball on its path for exactly two seconds. Each successive year had an increasing complexity and technical presence. This year I decided it was time to architect an experience that was awe inspiring.



Step 2: Distributed Symphony

The project consisted of one hundred and twenty kits containing all the ingredients needed for a team of five to create a percussive instrument. Each kit included the following items.

  • Connected Micro-controller
  • Solenoid Ball Dropper
  • Instrumented resonator from a Glockenspiel Trigger button
  • Ten Wooden Balls
  • Building materials
  • Artistic elements

Central to this project was the micro-controller. Adding logic and cloud connectivity was intended to enhance the experience and not get in the way. The controller board had considerable functionality exposed in the simplest way possible. Resistor values, power concerns, diodes and capacitors were baked into the board design so that the participants were free to focus on the challenge and not the technology.


Step 3: Take Chances

This project presented the opportunity to build a swarm of custom SMT microcontroller boards. This was new to me but seemed like something worth learning and a major challenge. To design the boards I used Upverter. It is a very cool browser based end to end solution for PCB design and production. Once you get used to finding components in their library, it is easy to use. The boards were based around the very capable ESP32 micro controller. The boards were designed to outlast this project as they were marked for donation to help children learn to code and design hardware. Each board has the following features:

  • ESP32 Micro Controller – Wifi and Bluetooth Capable Two PWM Solenoid/Motor headers
  • Four Grounded 3.3V GPIO headers
  • Two Neopixel Strip Drivers
  • Two Capacitive Touch Pads and Optional Headers Onboard LCD Display
  • Onboard Single Neopixel
  • Onboard USB to UART Programmer –
  • 5V Power Bus 3V power Bus

The project only used a single Solenoid Driver, the LCD Display, onboard Neopixel and three of the GPIO headers. The additional functionality has since been used as part of hands on teaching workshops for kids.

Take Chances


Step 4: Plan It Out

The first step in making your custom PCBs is to plan it out. When it comes to hardware design, that means creating your schematic. I used my breadboard to design each section of the total project. As each circuit started working, I carefully translated it into the Upverter Schematic tool. After that I cleared the breadboard and got to work on the next section until the controller board was logically complete.


Step 5: Lay It Out

The next step in hardware production is the PCB layout. This was way more fun than I thought it was going to be, it was like playing SimCity with electricity. The Upverter layout tool is pretty cool and fun to use. The more I worked with it, the more I polished the design and went for style points wherever possible. It is your job to add wires between on the components. There are green lines that highlight connections not traced with copper. The most exciting part of PCB layout is the ability skip ground traces. All they have to do is touch the bottom layer and they are grounded, easy! While we are talking about the bottom layer, that is another thing of beauty. If you have a lot of traces getting getting in the way, all you need to do is drop to the bottom layer, go around the traffic and pop back up on the other side.

Lay It Out

Step 6: Make It Real

Once you go to production, things get real and really expensive. Find a production house you feel comfortable with or one that someone you know has used before. You will be sending them files to create your boards and optionally doing the full assembly. The bulk of the cost is in buying the parts and assembly. Since this project required many units as well as using a surface mount components, I opted for the production house to do the assembly.

Upverter has download section where you can generate the files you need to handoff to production. To help save some back and forth, here is the list of files I exported:

  • Gerber Files
  • NC Drill (Excellon)
  • XYRS (Pick and Place)
  • Bill of Materials

Be ready to do one or two smaller test runs before sending out your big order. My design went to two small production runs each with errors before the big one hundred and thirty piece order. I padded the order by ten just incase some of the boards were produced with errors. As you can see in the second image, I had to use green jumper wires to fix the boards from one of the earlier production runs. That’s it, you are now the proud owner of 5 to 50,000 custom controller boards.


Step 7: The Reveal

This was the bittersweet ending to a long long road. The kits were distributed and prompt was given. The teams set out to build a percussive instrument that could reliably drop a ball onto the resonator with each button press. As the build went on, we revealed that the projects were cloud connected and had corresponding mobile dashboards. The teams used the mobile dashboard to play patterns into their devices. “Save and a Haircut” was now the goal. Once the bulk of the teams were able to play “Shave an a Haircut”, we were ready for the recital.

Everyone loaded their ball hoppers and stepped back. We used our administrative console to calculate individual machine offsets and play Guns and Roses as well as some Bach across all the machines. The room filled with music and it was a success.

Keep building and don’t let custom PCB projects get in your way. They are totally doable and there is a whole world of support out there.


DS – SweetC by Phando


DS – Bach by Phando

Sausage Factory – Sound check

Hi everyone,

It’s been a few weeks with a lot going on, not the least of which are some neat Halloween electronics projects.

But as many know I’ve been working on my own start-to-finish build of a high gain overdrive guitar pedal with a graphic EQ section called “sausage factory”. Some folks have told me I should probably call it something different, but for the record the idea did come to me while enjoying a bratwurst with sauerkraut, and it occurred to me a high gain pedal is a bit like a meat grinder… hence the name.

Anyway, a few friends emailed me after my first blog about the project and requested a sound demo. I didn’t have the actual boards from the fab at the time, let alone the assembled prototypes, but now thanks to Altium’s corporate management I have a small lab space, and I’ve been able to get together the parts and do this!

In my last blog post I showed part of the assembly process – using a laser cut solder paste stencil and hand pick-and-place actually didn’t take too long.

In the process however I discovered I had one incorrect footprint – so I did have to cut a couple of traces around the 9V DC input jack and rewire those.

I also found one design flaw (a very minor but nonethelese important one) in the EQ circuit which I have since been able to easily fix with the addition of a single resistor.

In this process I discovered the neat “Notes and Issues” feature in Upverter (CircuitMaker has something very similar called “Comments”) where I can basically highlight a part of the schematic or PCB and write a task, assigned to a specific user, with a description of the change needed. These all go into the issues list and as I address those for the final design revision I check them off:

This was developed for team collaboration on designs, but it is equally useful for an individual designer like me, just to keep a list of changes I need to make when I have time to get back to the next rev. Also, this is useful because I’ll keep the notes and the design as-is while assembling the first 5 prototypes, which I’ll hand modify like the first so as not to waste the PCBs and paste stencil. Once those are together I’ll go ahead and modify the design and check off the issues as done.

Watch this video for the initial sound test, and discovery of the EQ section bug.

Please subscribe, like, share and comment on this video! I need your support to make this better and make more project and technical walk-throughs like this.

I’d like to even do this with you! If you have a cool design and want to share and do a video interview, please email me and we’ll arrange it!

ben dot jordan at altium dot com.

And final PostScript: Here’s a track I was working on after a few more small mods to the Sausage Factory – my take on a classic 80’s pop song:

Spooky Halloween Design Inspiration

Happy Halloween!

To celebrate we have 3 amazing halloween design contest winning designs to bring the feeling of ghosts and pumpkins for you electronics entertainment.

  1. HalloweenGhost by designgameinc

Screen Shot 2018-10-31 at 1.10.04 PM.png

From the README:

“This creepy PCB has red LED eyes and eerie sound comes out of its slotted mouth (loudspeaker is on the bottom side). The sound is generated by an ATMega32 MCU. Any wave file can be converted to 8 kHz samples and inserted into the code (thanks to Rejith, see for more details about MCU firmware). The power is provided via a microUSB connector (no data lines, just power) and will therefore start to spook as soon as connected to any USB port (might also possess the device at the other end of the cable, use at your own risks). The ATMega32 can be programmed using the ICP connector. All the parts are on the bottom side and only the LEDs on the top side. Note the ghost’s pupils are the LEDs cathode mark. Happy Halloween!”


2. Halloween LED scary pumpkin by haroldocalvo

Screen Shot 2018-10-31 at 1.13.30 PM.png

“Halloween LED scary pumpkin”

The eye’s and mouth light up in this scary pumpkin!

3. Halloween Pumpkin LEDs by

Screen Shot 2018-10-31 at 1.19.47 PM.png

Halloween IoT Pumpkin!  This  one uses the Texas Instruments CC3220MODSF12MOBR to connect and control the LEDs on this Pumpkin.  Check it out!

Thank for all the halloween submissions.

Have a great halloween!