Get Started with Altium Upverter, Sign Up Now.
Before you get to the schematic and PCB layout stage, you’ll need some systems design tools to help you get started
When it comes to PCB design, most designers (and software companies) place schematic design as the starting line in any design. While it’s true that your schematic will form the foundation of your PCB layout, adding another layer of abstraction to your design provides a number of benefits as any electronics system becomes more complex. This extra level of abstraction may seem like an unnecessary task, but it will save you time later as you start creating your schematic.
The electronics system design space has historically consisted of a relatively small number of users, and Microsoft Office tends to be the most popular set of tools for system design. If you’re building your next electronic product, where can you get the tools you need for system-level design? Instead of working with an external flowchart tool, your electronics design software should include the features you need to create a functional block diagram or other system-level diagram for your next project. You can access system design features that are uniquely adapted to electronics in the right free online circuit builder.
Should You Start at the Component Level?
With a simpler device, starting at the component level is not necessarily a bad thing, simply because you are using fewer components. As a project becomes more complex, the answer becomes a definite “no.” In a complex system, it becomes easy to lose track of high level functionality as you focus more on the components in a schematic, rather than the links between groups of components.
Instead, it is better to start at the functional level, where the relationships between different product functions are described without specifying specific components. An example is shown in the image below. In this simple camera system, the different portions of the system that provide broad functionality (the camera, FPGA, Flash memory, and USB connectivity) are linked together to show how data and signals move between groups of components. While this system diagram only includes four functional blocks, it becomes easy to see how this same system could become increasingly complex as more functions are added.
The start of a simple camera module in Upverter’s free online circuit builder
This approach lends itself naturally to hierarchical schematic design. In this design methodology, each of the functional blocks in the above image would be designed in its own schematic. These individual schematics would contain all the components required to provide the specific functionality for that block. These schematics are then linked together by defining nets throughout the system. This forms a parent-child relationship between different portions of the system that reflects the system-level diagram. Once you receive your prototypes, it becomes much easier to trace design problems back to a specific functional block. If you need to implement a redesign, you just need to go back to the schematic for the functional block that happens to have a problem.
If you’re skeptical of this design methodology, then take a cue from successful electronics design architects around the world. The central ideas in system design are used at the IC level, board level, and overall product level in the most advanced technical industries. When you start designing your next electronic device at the system level rather than the schematic level, you can give yourself and your collaborators a higher level view of functionality, rather than getting mired at the component level.
Upverter’s Free Online Circuit Builder for System Design
Not all design platforms include a set of tools for creating functional block diagrams of electronics systems. This means you’ll need to use an external drawing program on your desktop or subscribe to a flowchart program. While these tools allow you to create a block diagram for a hardware system or a workflow for software, they don’t all include tools that for electronics systems.
The free online circuit builder in Upverter gives you access to an advanced schematic editor, PCB layout editor, and tools to generate deliverables for your manufacturer. These online design tools are accessible alongside a system design tool that includes premade and customizable functional blocks. You’ll even be able to explore your projects in 3D. All these design tools interface with a revision history feature that tracks changes to your design by all collaborators.
You can build boards like this with the right free online circuit builder
Placing these tools online provides a number of benefits that simply aren’t accessible in desktop design programs. First, your design is accessible anywhere by multiple team members. You’ll also be able to export your design files in standard formats for use in your favorite desktop design platform. Finally, you’ll have access to a massive components database without having to use a 3rd party data warehousing tool.
With the browser-based design features in Upverter®, anyone has the ability to access systems design, schematic design, and PCB layout tools in a free online circuit builder. The unique browser-based design interface includes an extensive components library and features to help you prepare for manufacturing, allowing you to take your design from start to finish. Upverter’s free online circuit builder includes standard features any designer expects to find in their electronics design software.
You can sign up for free and get access to the best browser-based PCB editor, schematic editor, and component database. Visit Upverter today to learn more.